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Abstract—All spacecraft systems require thorough verification
prior to launch, due to the complex interactions between sub-
systems and the inability to repair hardware once the system
is in space. The verification process is often constrained by
project timelines and budget, which is especially the case with
CubeSat programs, where development time may span only a
few years and development costs are kept to a minimum. These
constraints sometimes lead to a lowered emphasis on rigorous
testing, inducing technical risks into the project due to lack of
proper verification. Existing literature on functional testing of
CubeSats focuses mainly on ADCS performance verification and
does not account for exhaustive system verification of the CubeSat
as a whole. There is a need for inexpensive testing infrastructure
that can be developed alongside the spacecraft itself, without
impeding the progress of the project. The ORCASat automated
testing system provides this capability.

This system is designed to enable fully automated test se-
quences during all phases of development and throughout AI&T.
It is developed alongside the spacecraft systems from an early
stage and consists of a supplementary hardware platform and an
application running on a host computer. The hardware platform
enables simulation of adjacent subsystems in the satellite, which
allows firmware development and testing to advance without
completed hardware in place. Testability is also designed into
the flight hardware and software, resulting in reuse of features
and reducing duplication of work. The development timeline of
such a system has been appropriately curated to match common
milestones in a CubeSat project, and is presented here. As well,
the design details of this testing system and recommendations are
discussed, alongside expectations of how they will reduce testing
time and costs and enhance system reliability.

Index Terms—automated testing, verification, on-board com-
puter, CubeSat

I. INTRODUCTION

There has been a rapid increase in the number of CubeSats
launched over the past couple of years. Many companies and
universities choose CubeSat development due to the faster
timeline and less expensive costs when compared to larger
satellite platforms [1]. Testing of on-board computer hardware
and software for CubeSats is often weak or insufficient due
to the lack of time and money. As a result, many CubeSat
programs end in mission failure [2] [3].

The ORCASat project is a Canadian Space Agency funded
project, involving the development of a 2U CubeSat used for
optical telescope calibration. The Command and Data Han-
dling (C&DH) system consists of a custom on-board computer
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(OBC) design made from commercial-off-the-shelf compo-
nents and an in-house firmware architecture built upon FreeR-
TOS. The use of a custom, and not already space-qualified
OBC, brings about the need for an interface-compatible,
bespoke testing solution. Full verification of the system must
be executed in-house.

This paper describes the testing framework developed for
the ORCASat OBC, outlines the methodology used to design
this system, and explains the design choices that were made
in detail. The purpose of this paper is to show how the
development of an automated testing framework can be tightly
integrated into the overall development of the OBC subsystem,
in order to ensure that the OBC can be thoroughly tested before
flight.

II. BACKGROUND

A. Hardware-in-the-Loop Testing

Hardware-in-the-loop (HIL) testing refers to the practice of
executing tests on hardware with the addition of simulated
inputs, and monitored outputs. It is a technique used for low-
cost, thorough, and repeatable testing of embedded systems
[4]. In the context of CubeSats, HIL testing is typically
performed in the later stages of spacecraft integration [5].
Sensors and actuators that are difficult to verify in a laboratory
environment are simulated as inputs to the system, and the
system’s responses and behaviour are monitored. Although
HIL testing is largely useful for this purpose, its benefits can
be reaped in earlier stages of the project for testing of the
OBC.

Development of the ORCASat OBC occurs without any
physical connection to external systems for the first stages
of the project, leading to a large quantity of firmware being
developed without full verification. Due to the tight coupling
between hardware and firmware, issues may not be uncovered
until much later into the project where integration begins.
However, the introduction of HIL testing early on can reduce
this risk and allows for continuous testing of the OBC as the
system matures. This practice can also reduce the time for
testing during the AI&T phase, as the fundamental firmware
issues have already been discovered and resolved.



B. Test as You Fly

“Test as You Fly” or “Test Like You Fly” (TLYF) is
a philosophy in spacecraft engineering that revolves around
the preference for including flight-like hardware, software,
procedures, and other mission components in the testing
program of the spacecraft [6]. With a TLYF approach, the
satellite is tested with flight-like timing and commands, using
as much flight infrastructure as possible. This helps verify that
the actual mission can be executed end-to-end, and that on-
orbit operations will not be the first time that the spacecraft
experiences certain commands and inputs. The downside of
TLYF testing is that certain tests may take a long time, such
as those involving flight-like telemetry collection rates. For
this reason, many spacecraft undergo a hybrid approach that
involves TLYF, but also includes increased cadence tests to hit
increased levels of coverage in smaller amounts of time [7].

C. Related Work

Recaps of CubeSat programs typically stress the need for
more testing of all types [3]. On larger spacecraft, the test
as you fly” approach is a standard methodology applied on
many missions, but the need for increased automation and
measurement of system parameters has been noted as an
improvement to incorporate in future missions [7]. The Small
Projects Rapid Integration and Test Environment (SPRITE)
system from Marshall Space Flight Centre is an example of
a flexible testing system that includes power measurement
features, and has been applied to small satellite hardware.
SPRITE was used to verify a Guidance, Navigation, and
Control system for a 3U satellite, and is capable of supporting
test activities for other satellite systems with its extensive
simulation capabilities [8].

Despite the recognized need for more thorough testing,
many CubeSat testing programs focus on tests at the end
of the development phase, with all subsystems integrated [9]
[5] [1]. As a result, problems in individual subsystems are
often caught late in the development cycle [9]. However, some
literature about CubeSat software development does mention
testing during subsystem development [10] [11].

III. ARCHITECTURE
A. System Overview

The ORCASat C&DH testing system consists of three major
components: the design under test or OBC, a HIL test platform
(HTP), and a desktop application written in Python known as
Houston. The three components are closely integrated across
hardware and software interfaces, forming the full system seen
in Figure 1. The HTP is an auxiliary circuit board that connects
to the OBC over the satellite bus and a debug connector. The
satellite bus is used to exercise the OBC’s electrical interfaces
to the rest of the satellite, and the debug connector is used only
for testing. The Houston application provides a simple method
to interface with both the OBC and the HIL test platform
over a serial interface. Houston allows for graphical command
creation, monitoring of telemetry, and execution of tests.

The infrastructure around the OBC was developed with
the intention of adopting a test-as-you-fly approach, allowing
the OBC firmware and hardware to maintain as close to its
flight configuration as possible. The addition of the HIL test
platform was a result of needing to non-intrusively monitor
signals on the OBC, as well as physically interface with the
OBC’s communication peripherals for hardware verification.
By introducing this secondary circuit board into the system,
all debug hardware components may be taken off the OBC,
leaving it with only the necessary hardware for flight, even at
a prototype stage of development.

On the software side, the interface between all three com-
ponents takes the form of commands, responses, and telemetry
files. By employing a similar communication interface as to
that used during flight, the OBC’s command system may
be exercised extensively throughout development. This not
only exhaustively verifies the on-board command system, but
also tests the command scheduling and uplinking capabilities
of Houston. Although Houston is used for testing during
development, it will later be employed as the mission control
software on the ground during flight, so it is important to verify
its abilities early.

B. HIL Test Platform Capabilities

The HIL test platform interfaces with the OBC over the
satellite bus for signal monitoring and subsystem simulation.
Signal monitoring capabilities are used continuously during
most tests of the OBC. Subsystem simulation capabilities
are added to the HTP firmware on an as-needed basis, de-
pending on the testing requirements and development level
of external subsystems. Since the HTP has complete access
to all satellite bus signals, simulation of external subsystems
is done primarily with firmware. Simulating with firmware
means that failure cases that are not possible to simulate with
real subsystem hardware can be implemented, which is a key
benefit of the HTP design. The ability to simulate subsystems
flexibly in firmware is also beneficial when developing with
COTS subsystems, which have long lead times and may not
be easily available to OBC developers if only one flight unit
exists.

The HTP also has control over the reset state of all hardware
components on the C&DH board through the debug connector.
Reset control allows for simulation of complete on-board
component failure during testing, allowing the OBC’s fault-
tolerant firmware capabilities to be exercised. Simulation of
on-board component failure could also be done within OBC
firmware itself, but would require the addition of non flight-
like capabilities in order to virtually turn off components.
External reset control of these components allows unmodified
OBC firmware to be used for this sort of testing.

C. Houston Capabilities

Houston is a generic platform designed to support testing
and mission operations. OBC developers can construct and
send commands, and view live telemetry streams from a
connected OBC during development. Houston can also execute
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Figure 1. ORCASat C&DH Testing System Components

automated test sequences. Much of the functionality required
for testing the OBC, such as command scheduling and parsing
of telemetry data, is also required for mission operation. The
infrastructure developed first for OBC testing is designed to
be reusable during flight, reducing development duplication,
and ensuring that by design, the OBC is tested as it will be
flown.

D. Automated Testing

The ORCASat automated testing system was developed
with ease of use and low overhead in mind. At its core, an
automated test is driven by commands sent through Houston
and is verified by checking the returned log messages and
telemetry from both the OBC and HTP. Tests send ASCII com-
mands to control the OBC and schedule it to perform tasks, as
would be done in flight. For HTP control, commands are used
to invoke monitoring functionality or to trigger the HTP to
simulate a faulty input going to the OBC. Stimulus generation
can occur rapidly, or at a flight-like cadence, controllable from
within the test run by Houston. The OBC’s response to the
stimulus can then be checked using the reported logs.

Tests are written in Python, and are run using the Pytest
framework. Test status and results are passed to the Houston
user interface to be displayed. Test files interact with boards
using a series of Python classes that were written to send
commands to either board and check responses. The use of
a high-level language has made the development of complex
tests and new testing infrastructure very straightforward. For
example, tests that schedule OBC commands at random times
can be implemented with standard Python features such as
random number generation. Using a high-level language also
allows for intricate checking of data returned from the OBC
to be written easily, reducing the overhead required when
implementing tests.

Once tests are written, they are version controlled using
git. The suite of tests is updated as new firmware features
are added, and expecting that all tests pass is an important
checklist item in the firmware development process. The

ability to easily run and rerun tests allows regression testing
throughout the development of the OBC and its firmware.

E. Data Handling in Tests

Two sources of telemetry data are available from the OBC
during tests. The first is the “live” telemetry stream that
consists of informational log messages, which are transmitted
immediately by the OBC in response to commands, anomalies,
or other important events. The live stream of telemetry is very
useful during development and early testing, where immediate
and verbose responses are useful. However, it is not flight-like
because during flight, ORCASat will only transmit data upon
request.

The other source of data is telemetry data files, which
contain many of the same messages as the live stream. Certain
data files also contain periodically-collected telemetry from all
subsystems of the satellite. Data saved to files is stored on the
OBC until a downlink request is received. On-orbit, the OBC
will not be transmitting the live telemetry stream due to radio
licensing and power consumption considerations. All data that
will be downlinked is saved to a file, and is downlinked by
command when ORCASat is in range of a ground station.

During most early tests, the live stream is monitored for
desired and undesired responses to particular commands and
events. The consistent format of the messages in the live
stream makes it straightforward to define and check the
expected behaviour of the satellite in test code, and therefore,
classify if a test passes or fails.

During flight-like tests, the telemetry data files are used as
a source of verification instead. Once the OBC’s responses
are to be examined, Houston transmits a file downlink request
and acquires the on-board files using the same protocol used
in flight. The contents of the file are examined automatically
based on the expected message types and timestamps required
by the test. Different files on the OBC take on different
formats, but for functional testing of the OBC, the primary
files of concern are the system and error logs, which are
populated with messages identical in format to those from
the live telemetry stream. Files for external subsystem teleme-



Mission Preliminary Critical Flight
Concept Design Design Readiness
Review Review Review Go For Review
Concept (MCR) (PDR) (CDR) Launch (FRR)
Development Preliminary Design g Detailed Design - AI&T ( Overtime
» » » I
[ [ | [
September January October February August October
2018 2019 2019 2021 2021 2021
L 1 | 1 |
I C&DH Phase 1 ! C&DH Phase 2 ! C&DH Phase 3 ! C&DH Phase 4 !
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try typically have timestamped measurements of engineering
parameters such as voltage, temperature, or current. These
parameters are expected to be checked during later phases
of testing when the OBC is connected to real subsystem
hardware.

IV. METHODOLOGY

A. Development and Test Phases

In a CubeSat project, time and budget are limited resources
that drive a significant portion of the work that is completed.
For this reason, developing an automated testing framework is
typically not a high priority. The framework outlined in this
paper is intended to be a low-cost solution to this problem,
that provides great benefits during development, and results
in creation of components that are required for running the
mission. By splitting the development of this infrastructure
into different phases, closely following the development of
the OBC itself, the overhead incurred by developing test
infrastructure can be minimized.

The work is split into four phases, scheduled as seen in
Figure 2:

o Phase 1 - Initial Bring-up: The purpose of this phase
is to test the basic hardware functionality of the OBC,
verifying both the firmware drivers and the hardware
devices. In this stage, in-firmware tests are used on the
OBC to verify some core functionality of the hardware.
In this first phase of development, Houston allows op-
erators to visually confirm that the board is operating as
expected, by providing a user interface for displaying live
log messages. The Houston Pytest infrastructure is not
developed in this phase, to allow for focus to be placed
on developing and verifying the core features of the OBC,
which is important in the early phases of the project to
prove the feasibility of the C&DH system as soon as
possible.

o Phase 2 - System Software: The second phase of devel-
opment begins once all the hardware has been evaluated
for basic functionality and is working as expected. At this
point, the OBC firmware consists of core infrastructure

and low-level drivers. Firmware moves onto the develop-
ment of key system features, such as the error handler and
command scheduler. In this stage, the HTP subsystem is
provided with monitoring functionality for some of the
physical OBC features, such as the watchdog heartbeat,
on-board GPIO expander, and current draw. Houston
also gains the functionality to actively control the OBC
through the use of automated tests, and downlink log
files from the OBC. During this phase, automated testing
because a regular piece in the development process. No
features may be added to the OBC main code base until
all tests are passing, and new tests are added weekly
to support the verification of new features. The purpose
of this second phase of testing is to verify the internal
features of the OBC prior to moving on to subsystem
integration. This phase enables continuous testing of the
OBC as new features are added, and ensures that issues
are caught early and often.

Phase 3 - Subsystem Integration: The purpose of this
phase is to prepare the OBC for Assembly, Integration &
Testing (AI&T). In this stage, the OBC has all telemetry,
command and error handling interfaces with other sub-
systems in place. To verify these interfaces prior to AI&T,
HTP functionality is expanded to allow for mocking of
the relevant subsystems. Error injection is also added to
the HTP’s capabilities, to help verify corner cases that
may not otherwise be possible with the real hardware
connected. By performing this testing phase prior to
AI&T, a majority of the errors in the OBC firmware
can be uncovered, allowing the AI&T process to follow
smoothly afterwards.

Phase 4 - Mission Life-cycle: The final phase of
development comes with the completion of the OBC
hardware and firmware. The project as a whole is in
the AI&T phase, where testing of the entire satellite
begins. The existing test sequences are executed to verify
functionality of the OBC while it is integrated with the
rest of the satellite. Additionally, increased cadence and
day-in-the-life tests are added, with focus on the testing
needs of non-OBC subsystems. These tests are all still run



by Houston interacting with the OBC, and tests may be
executed for qualification before and after satellite-wide
physical tests, such as vibration tests.

By breaking the development of the automated testing
framework into phases that directly support the OBC’s devel-
opment timeline, new firmware features can be tested as soon
as they are developed, and regressions can be caught from
an early stage. The presence of this framework throughout
all project phases allows for easier verification at each phase,
while only developing the necessary test infrastructure to suit
the current level of development. The end result is a system
that can support fully automated test sequences in any config-
uration of HTP simulation and real subsystem hardware. Such
a system allows for repeatable, consistent and controllable
testing.

B. Designing the Testing Platform Hardware

The need for a HIL test platform was recognized early in
the C&DH system design process to enable flexibility for
how and when the OBC can be tested. HIL systems tend
to rely on commercial hardware such as DAQs [12], or on
low-cost hobbyist-level devices such as Arduino [13]. Both
of these choices are likely made for integration concerns.
Commercial tools come with software support for automation,
and hobbyist-level tools are straightforward to use.

For ORCASat C&DH, the HIL test platform is based on
a development board for the TMS570, the same series of
medical-grade processors used in the OBC, and a custom
PCB that mounts on top of the development board. This
platform was chosen to reduce costs and to enable reusability
of firmware components between the two boards. By using a
low-cost development board as the computing platform and
a simple 2-layer PCB, the test platform hardware costs are
reduced greatly while useful functionality is maximized.

The custom PCB design began with an analysis of the
interfaces present on the OBC, coupled with the planning of
tests that the hardware must support. Additionally, features to
support day-to-day OBC firmware development were added
to the HTP, as the OBC requires power supplies and serial
interface conversion. The following hardware features are
present on the HTP:

o OBC reset buttons, which are useful during development.

o USB to UART converter, allowing the entire device to
connect to a host PC using a single USB port (for
OBC firmware development) or two USB ports (for full
simulation capability).

o ADC channels allowing current monitoring of the OBC
power supplies.

e Mapping of important OBC signals such as watchdog
trigger pins to the HTP microcontroller, allowing them
to be monitored.

« Flexible power supplies - the OBC and HTP stack can
be powered from a USB port for portable development,
or can be powered from bench power supplies for in-lab
testing.

The HTP also includes a test harness called the “debug
connector” which maintains the set of signals that are not
required during flight, but are required to adequately test the
system - whether it be verifying a particular design detail, or
injecting an anomaly such that the detection of the anomaly
can be verified from elsewhere in the system. Determining
which signals should be made available for the test harness
requires tests to be conceptualized on a component level
during the hardware design phase. On the ORCASat OBC,
the following signals were brought out on to a separate testing
header to facilitate automated testing of fault scenarios.

o Peripheral device power/reset: Power and reset signals
are important for testing total failure cases, and for
isolating devices during system power measurements. If
a peripheral can be reset or turned off completely, the
firmware response to the complete failure of the device
can be checked.

o Current monitor outputs: The ORCASat OBC features
on-board current monitoring. The current sense amplifier
outputs are broken out to the test header to allow constant
external measurement of current.

o Hardware alarms: Signals that are hardware-driven but
are separate from the OBC processor are difficult or
impossible to check with OBC firmware. For this reason,
they should be brought out to a header for testing
purposes.

C. Monitoring OBC Signals

HTP firmware implements monitoring functionality using
individual FreeRTOS tasks. For example, the task that moni-
tors the OBC’s watchdog heartbeat signal is started automati-
cally by command at the beginning of a test. The task begins
to run, and reports properties of the signal to Houston, such
as its period. If the OBC fails to pet the watchdog during the
test, the monitor task detects this, and sends an appropriate
message to Houston. In most tests, detection of a watchdog
petting failure would cause the test to fail, as it indicates hung
firmware. However, flexibility is provided in some tests, such
as those verifying that the OBC can reboot itself, the testing
infrastructure can be configured to expect a certain failure
indication from a monitor.

Other monitor tasks on the HTP include those for measuring
OBC current and OBC general-purpose outputs. In most cases,
the outputs of these monitors are checked automatically in the
background of in every test, to catch issues such as spurious
OBC outputs, or to record current consumption figures. Since
each monitor task is a simple and self-contained element of
HTP firmware, and their interface to Houston is consistent,
adding continuous monitoring of OBC effects to all test
scenarios has been simplified.

D. Test Planning

As prior mentioned, the infrastructure outlined in this paper
is developed on an as-needed basis, which drives the timeline
of each phase. To determine which features are needed, it is
necessary to develop a test plan at the start of each phase or



at major milestones throughout the project. With a test plan in
place, each test can then be assessed for required infrastructure
needed to enable execution of the test. Defining work based on
the test plan ensures that no unnecessary features are added,
minimizing the overhead of maintaining this infrastructure.

The ORCASat test planning process builds off of the
requirements of the system, and is driven by the features
expected to be completed by the end of a phase. The require-
ments of each feature are taken and broken into test cases that
verify the system’s compliance to these requirements. Each test
case is then converted into an automated test in Houston and
added to the repertoire of tests used to verify the system. By
the end of a phase, this process accomplishes verification of all
added features in that phase, meeting the goal of continuous
integration and testing of the system.

V. CONCLUSIONS AND RECOMMENDATIONS

The ORCASat C&DH testing system has been successfully
used to find bugs in OBC firmware during development, and
to verify firmware functionality against requirements. Many
of the firmware bugs found were introduced by new changes
and would have gone unnoticed without testing, potentially
manifesting later during AI&T, or even during flight. With
the testing system at its current level of development, it is
straightforward to add tests for new features, and regression
testing can be done with a single button click. The follow-
ing recommendations are worth considering by any CubeSat
subsystem team who develops firmware or custom hardware:

o Develop prototypes with testing in mind: break out
important signals, and consider which failure modes may
not be possible to simulate in firmware.

+ Automate testing as much as possible: once the initial
hurdle of automating a single test is complete, the incre-
mental effort required to automate future tests is likely
minimal. This allows for effort to be placed on increasing
the coverage of tests, as the time taken to introduce new
tests is negligible.

o Consider a high-level language for testing infrastruc-
ture: high-level languages allow for fast creation of
test infrastructure because they have feature-rich libraries
and straightforward syntax. Third-party packages can be
leveraged to build complex features quickly.

o Plan testing alongside firmware development: having
test infrastructure ready when firmware is developed
means new features can be tested thoroughly as they are
written. Developing either firmware or tests well ahead
of time risks wasting effort, as details may change in the
future.

« Test extensively at the system level before integrating:
integrating with multiple known-good systems helps iso-
late any problems to the act of integration itself. Ideally,
most testing that can be done with a non-integrated
system can also be done on the integrated system, en-
suring thorough proof that no issues were introduced
by integrating. Tests specific to the capabilities of the

integrated system should also be performed, such as full
day-in-the life mission simulations.

The ORCASat C&DH team continues to use and improve
our testing infrastructure. We expect that with it, we will
uncover and be able to fix more firmware bugs before AI&T,
and deliver a robust system that will allow the mission to
achieve its goals.
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